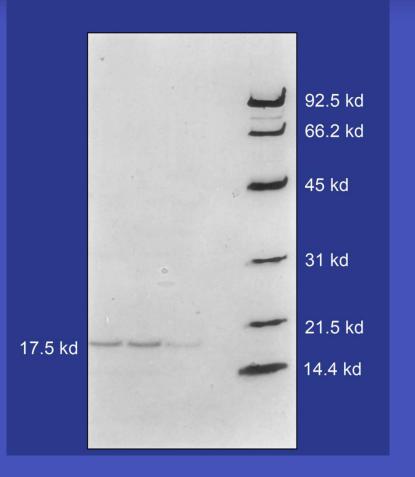
The discovery of new targets for treatment of inflammatory disorders

Brussels Tuesday Nov. 10, 2015

Bruce Beutler Center for the Genetics of Host Defense UT Southwestern Medical Center, Dallas

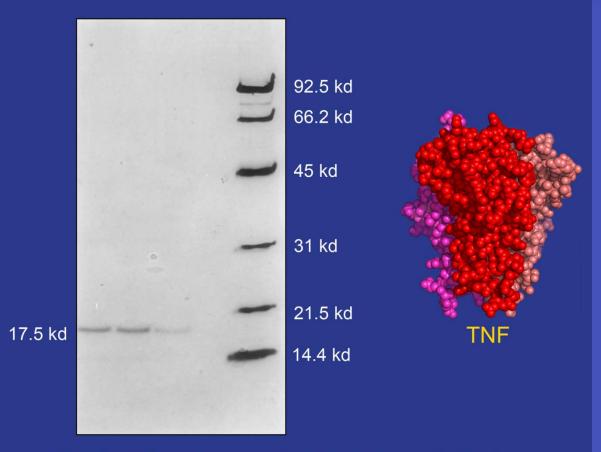
Biological Activity of Cachectin

- Presumed important for wasting in chronic disease, cachectin was secreted by macrophages in response to LPS.
- Defined by its ability to shut off the synthesis of adipocyte lipoprotein lipase, an enzyme needed for the uptake and storage of plasma triglycerides.



Isolation of mouse cachectin

- Pressure dialysis of medium from ~500 10 cm plates of LPS-activated RAW 264.7 cells (early harvest)
- ConA sepharose chromatography
- Isoelectric focusing in a glycerol gradient
- Preparative native gel electrophoresis
- Preparative SDS gel electrophoresis
- Yielded microgram quantities of an apparently pure 17.5 kD protein with approximately 2% yield of initial biological activity (prior to denaturing gel electrophoresis).
- Cachectin comprised 1-2% of the protein secreted by RAW 264.7 cells during the first two hours following LPS activation.



Leu-Arg-Ser-Ser-Glu-Asn-Ser-Ser-Asp-Pro-Pro-Val-Ala-?-Val-Val-Ala-Asn...

Cachectin = Mouse tumor necrosis factor

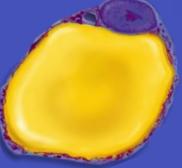
(mouse CACH)

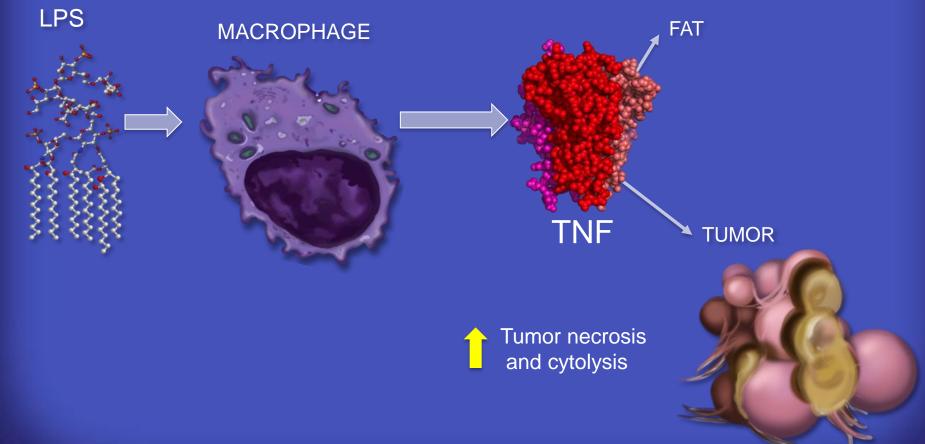
H₂N LEU-<u>ARG-SER-SER-GLU-ASN-SER-SER-ASP</u>-PRO-<u>PRO-VAL-ALA-</u>? -<u>VAL-VAL-ALA-AS</u>N...

H₂N VAL-<u>ARG-SER-SER-SER</u>-ARG-THR-PRO-<u>SER-ASP</u>-LYS-<u>PRO-VAL-ALA</u>-HIS-<u>VAL-VAL-ALA-ASN</u>...

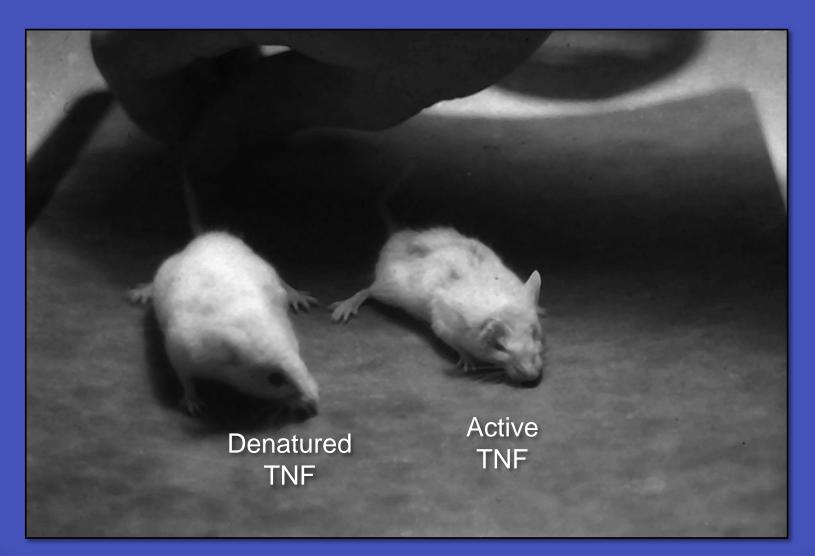
(human TNF)

1 μg of cachectin had 10 8 U of TNF activity

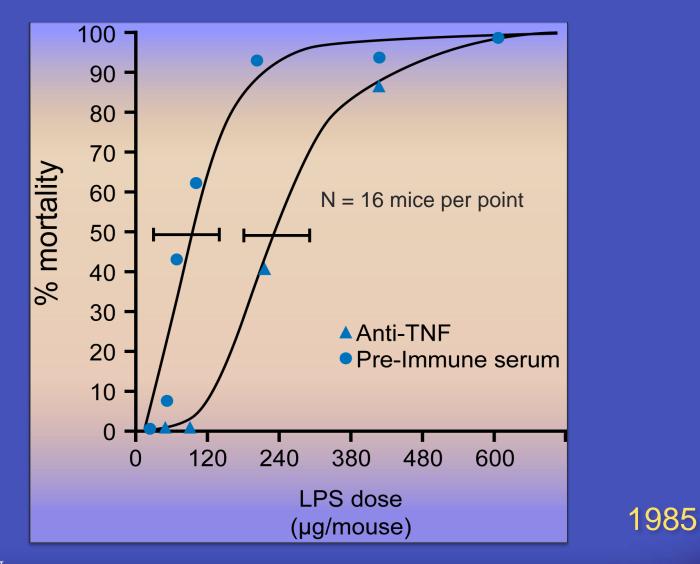


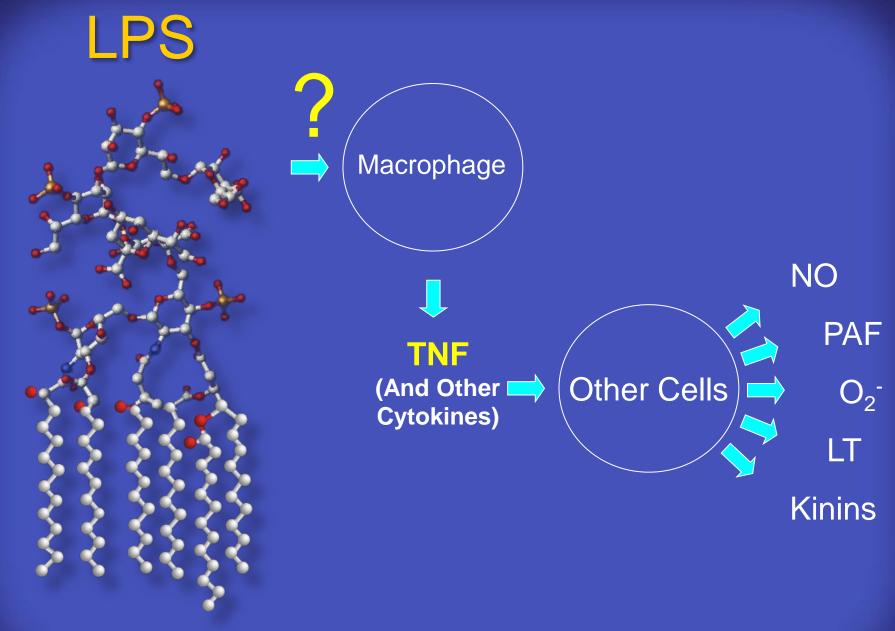

1985

TNF mediated diverse effects of LPS. This raised the question: might TNF mediate *all* effects of LPS, including the lethal effect?

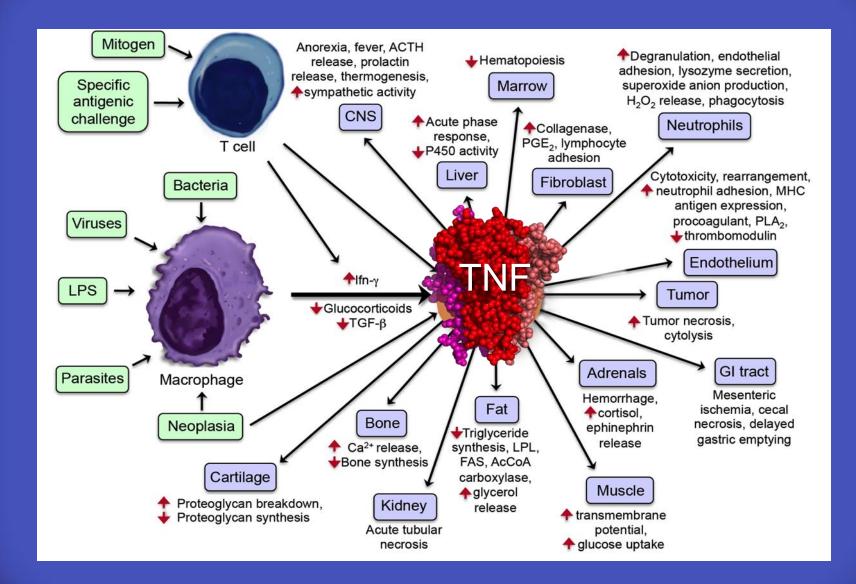

Triglyceride synthesis, LPL, FAS

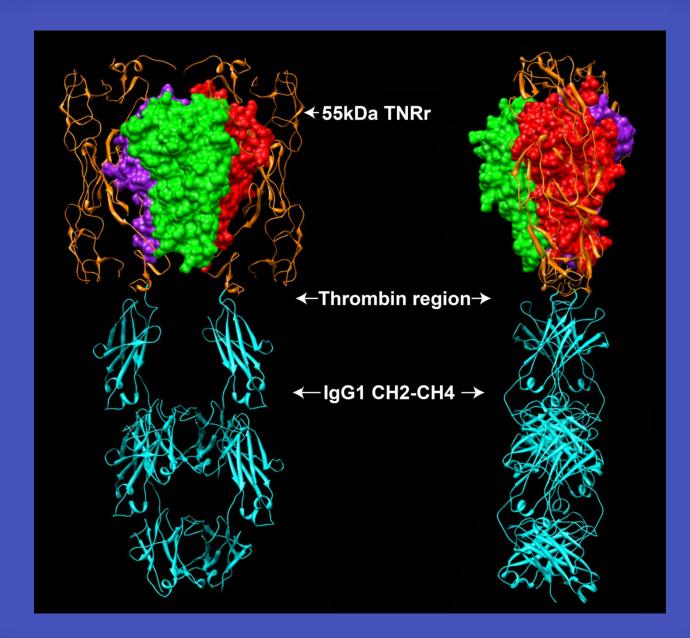
AcCoA carboxylase, glycerol release


Purified TNF mimics LPS in its toxicity



The lethal effect of LPS is attenuated by passive immunization against TNF

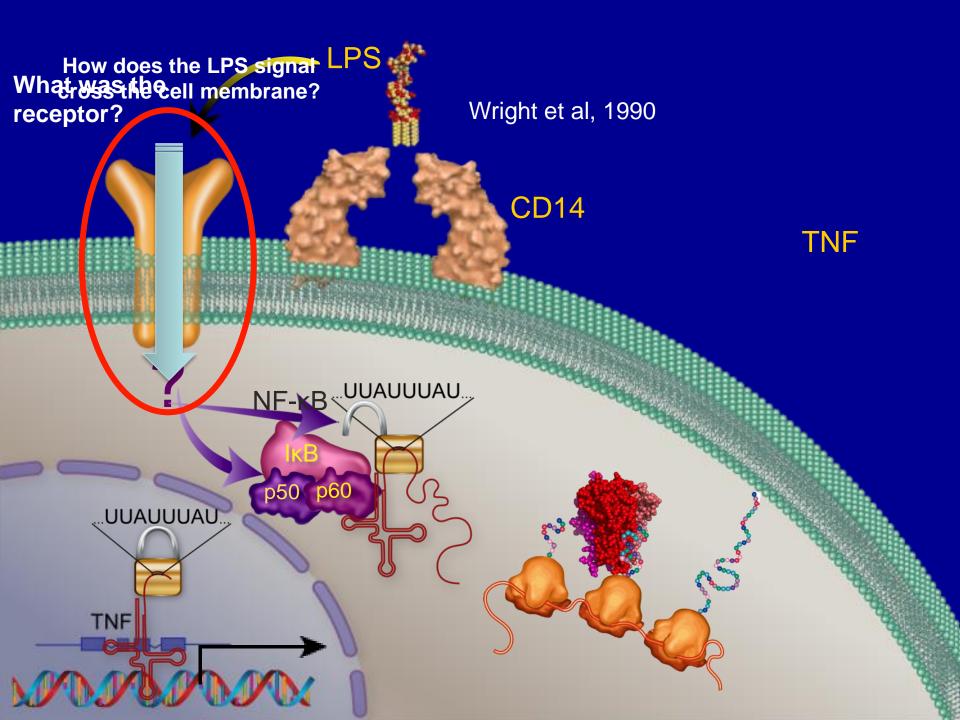



J SOUTHWESTERN

Looking at a model of a recombinant TNF inhibitor

MEDICAL CENTER

1991



Peppel et al, JEM: 174(6):1483-9, 1991

All the while, I wondered about how LPS was perceived by cells and gradually came to see this as the most important question in the field of immunity and inflammation.

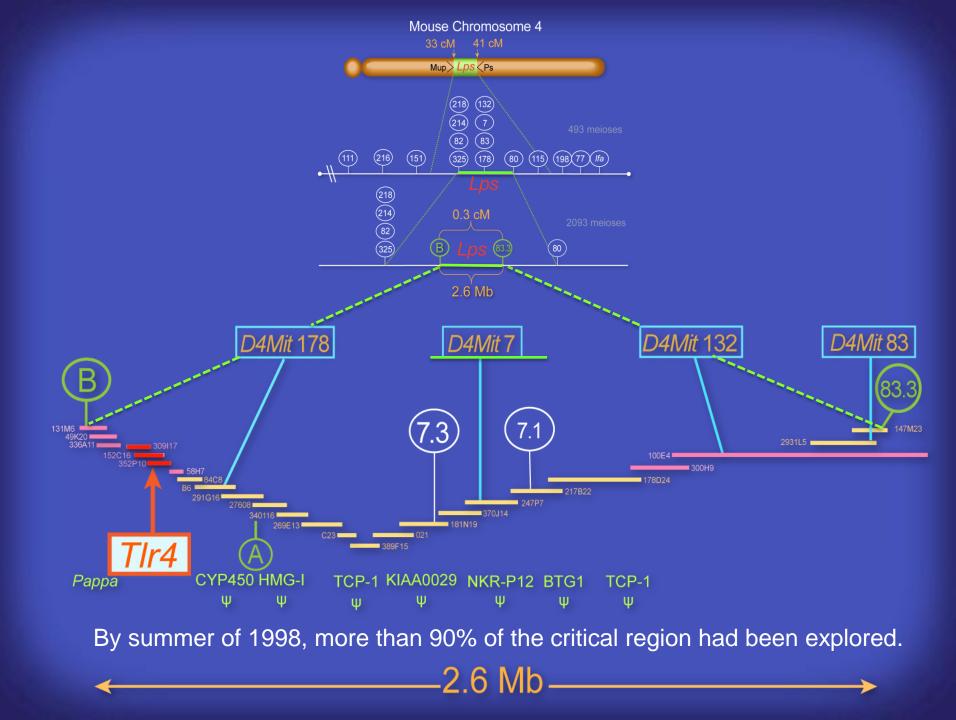
- We still did not know how innate immune recognition worked, and this seemed an excellent entry point into that question.
- To this day, we don't know what drives sterile inflammation. Here too, I thought we might find molecules of primary importance in this class of diseases (RA, ankylosing spondylitis, others).

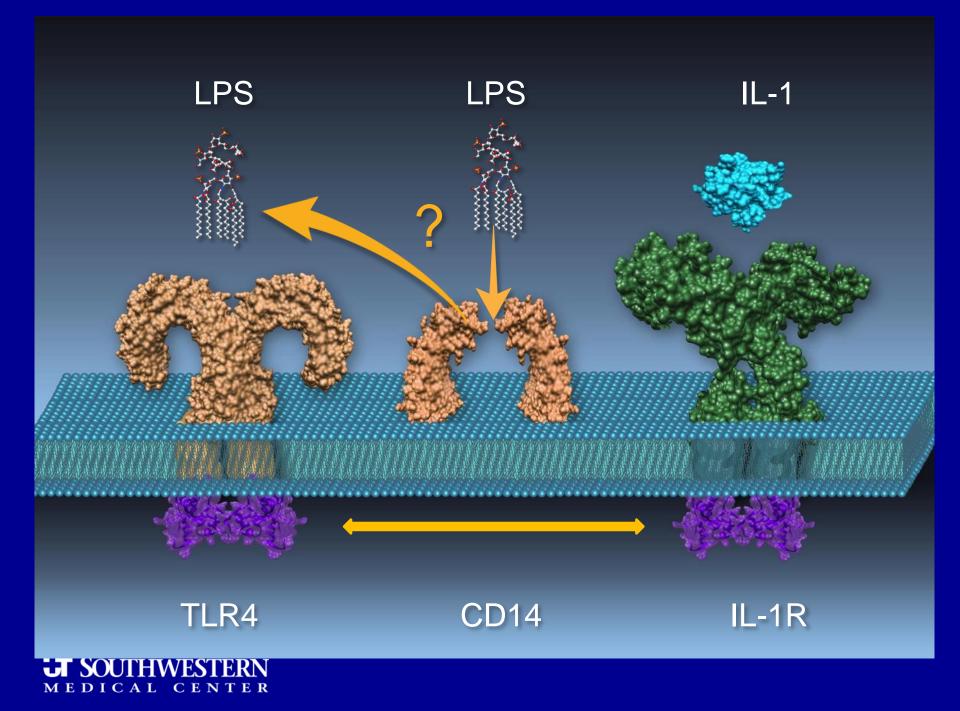
We made several attempts to find the LPS receptor using immunological methods, protein chemistry, and expression cDNA cloning. All these approaches were unsuccessful.

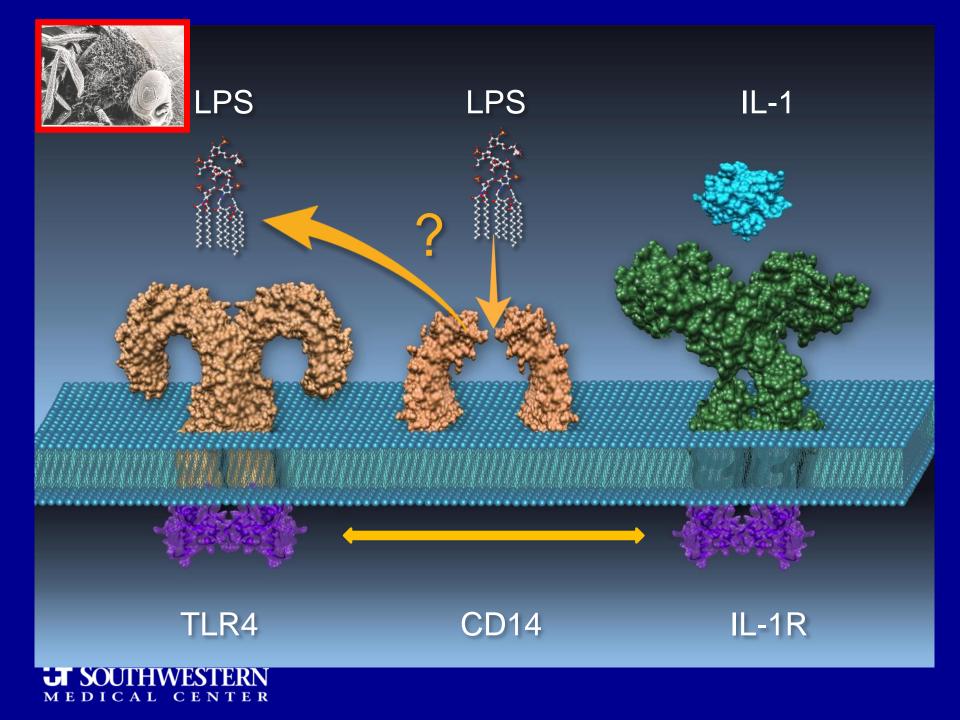
The LPS receptor was ultimately found using a pure genetic approach, based on two unrelated substrains of mice that couldn't respond to LPS.

The C3H/HeJ Mouse and the Lps Locus

 Resistant to LPS (Heppner and Weiss, 1965), but highly susceptible to Salmonella (O'Brien, 1980)


The C57BL/10ScCr Mouse and the Lps Locus

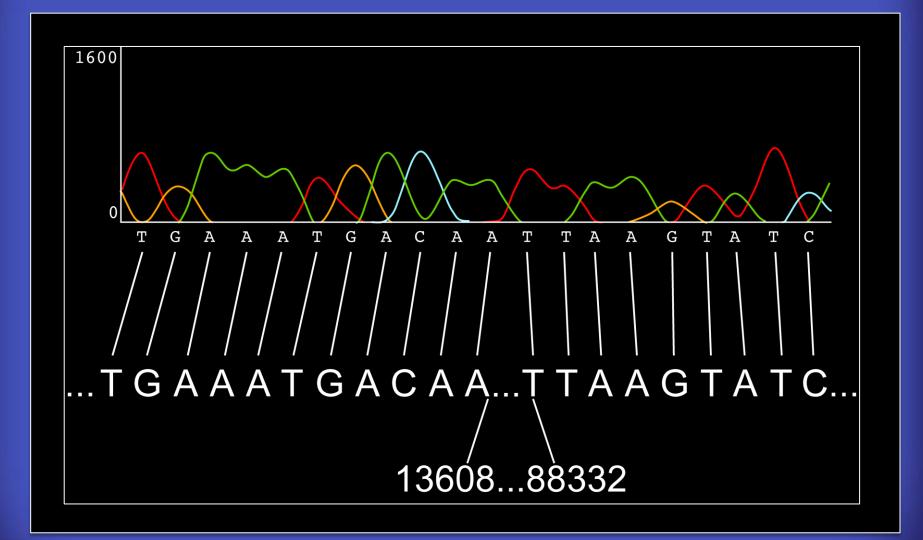

- The same gene was affected in the LPS-refractory C57BL/10ScCr strain (Coutinho and Meo,1978).
- Located on Chr 4 (Watson and Riblet, 1978)


Beginning in 1993, we turned to positional cloning to try to find which gene was affected.

- Positional cloning = cloning by phenotype.
- One first establishes a "critical region," delimited by markers in the genome, from which the phenotype emanates (genetic mapping)
- One then clones all the genomic DNA across the critical region, and identifies all the genes residing within it (physical mapping)
- Finally, one finds the causative mutation by comparing sequences of affected and control strains.

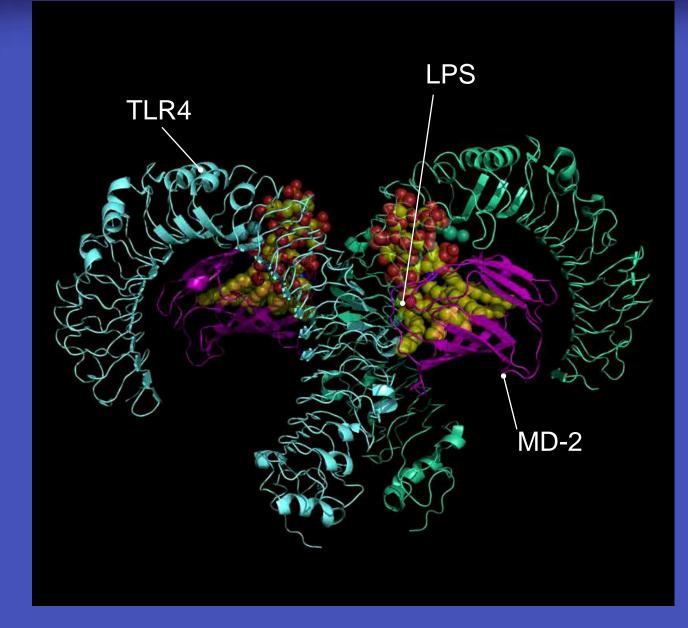
JF SOUTHWESTERN MEDICAL CENTER

The mutation in *TIr4* distinguishing C3H/HeJ from C3H/HeN mice

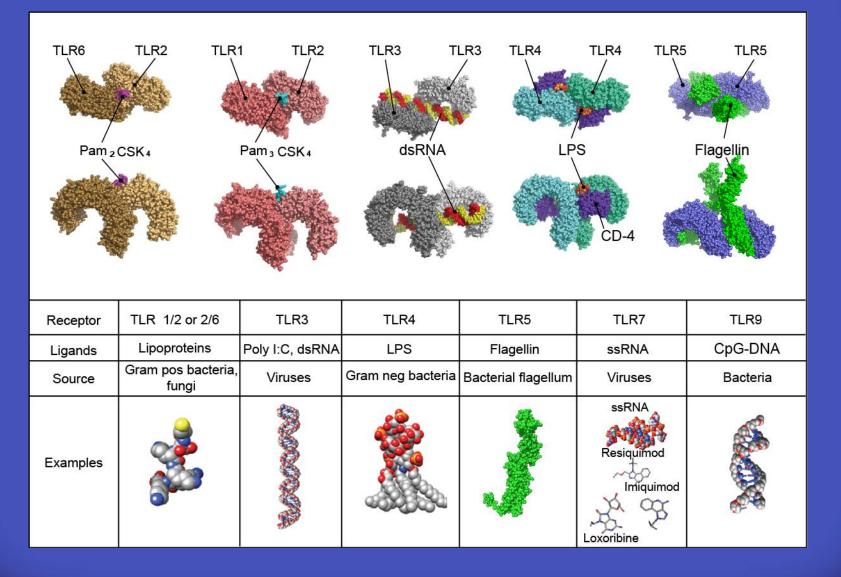

1998

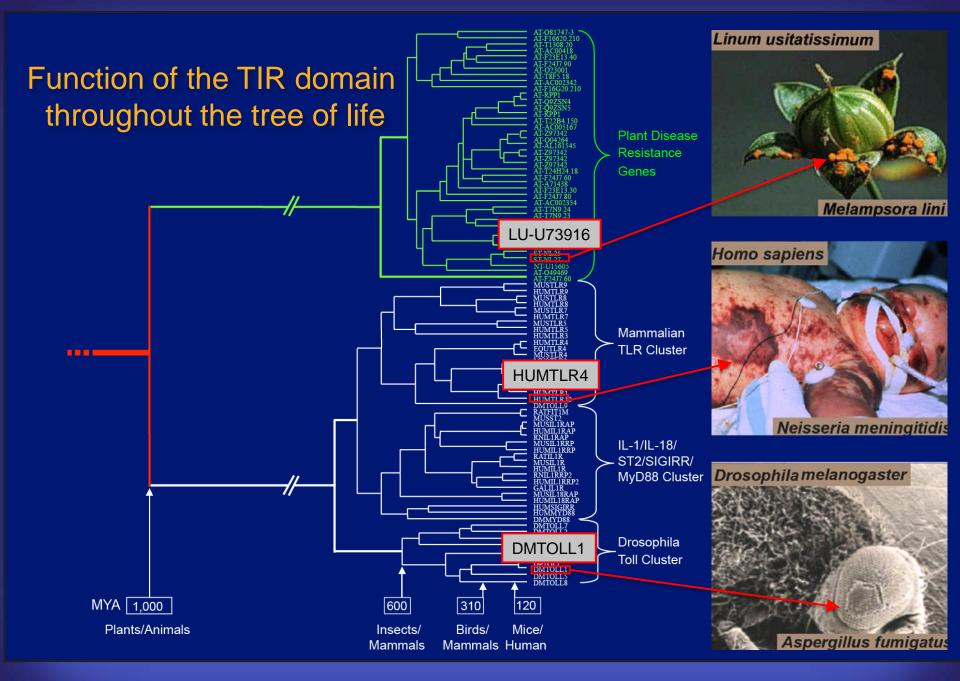
C3H/HeN

C3H/HeJ



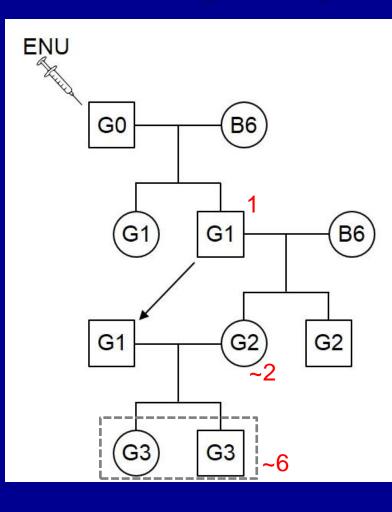
Deletion of 74 kb in the C57BL/10ScCr mouse


1998



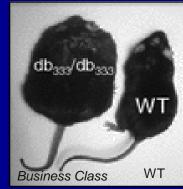
Crystal structure of the TLR4/MD-2/Lipid-A complex was published by Jie-Oh Lee (Park et al) in 2009

Now, the mode of binding of several ligands to TLRs is understood

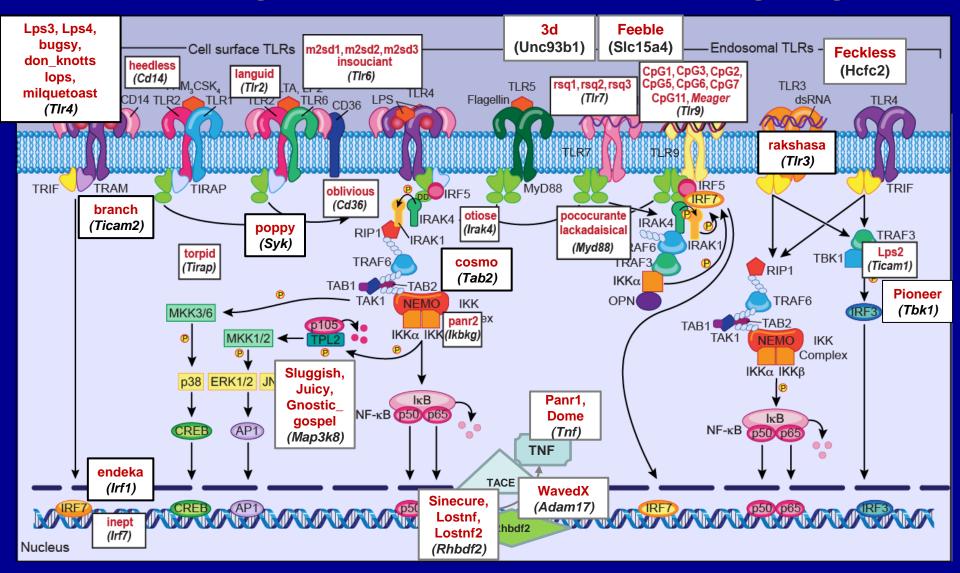


JT SOUTHWESTERN MEDICAL CENTER

- The next set of questions had to do with the signaling pathway utilized by TLR4.
- There were no other spontaneous mutations in mice that could inform us of how LPS signaling worked.
- We decided to create new phenotypes using a mutagen (work that began in 2000).
- Many other aspects of immunity interested us as well, and these too were placed under surveillance in screens for phenovariance.


Making new phenotypes in mice to understand TLR signaling: mutagenesis with ENU

MEDICAL CENTER



An average of 60-70 coding changes are represented in every G1 progenitor.

50 mutations in 26 genes were detected because of TLR signaling defects

Mutation finding was accelerated by technical innovations over this period, but remained much too slow, and was a blind process.

By 2011, it was clear that the rate limiting step in mutation finding was genetic mapping.

Stock establishment, outcrossing, backcrossing, genotyping, and phenotyping to establish location took much too long.

Many more phenotypes were declared than could be found.

A new approach was needed.

We wished for a magical tool that would permit instant resolution of phenotypes to a single base pair change.

We wished for a magical approach that would permit instant resolution

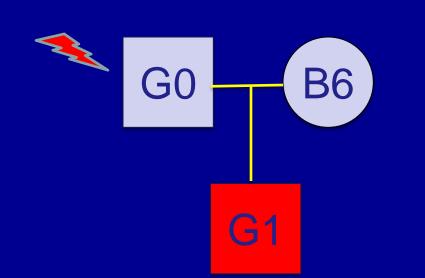
Mutation

οι μποποιγμου το α υπηριο 20

Gene symbol: Sox10

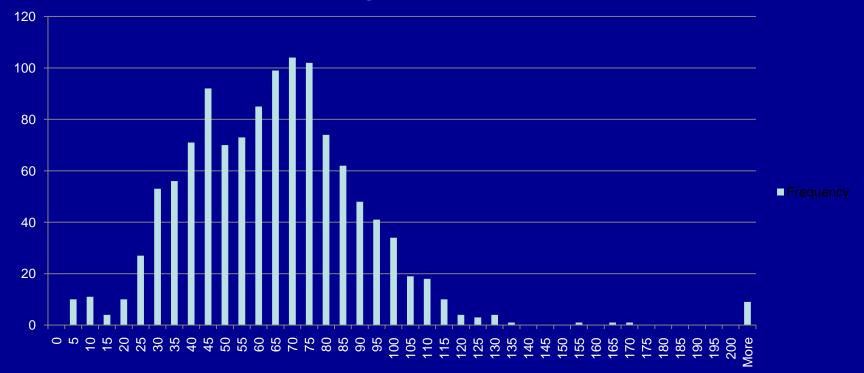
Mutation: 15:79,163,324 T -> G

Protein change: N130K of 466 residues

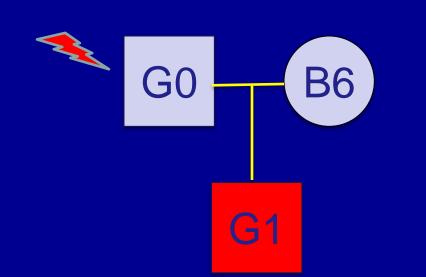

Motif: DNA-Binding High Mobility Group

Human orthologue: SOX10

How it is done...


First we make the G1 mice...

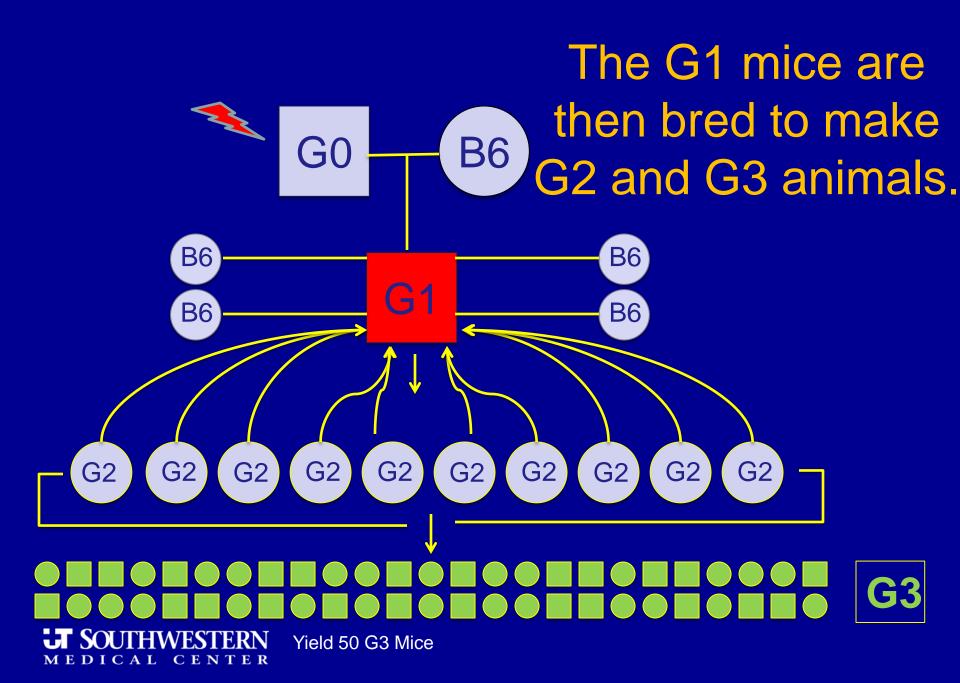
Then we whole-exome sequence all G1 mice to find all mutations they might transmit to the G2 an G3 mice.

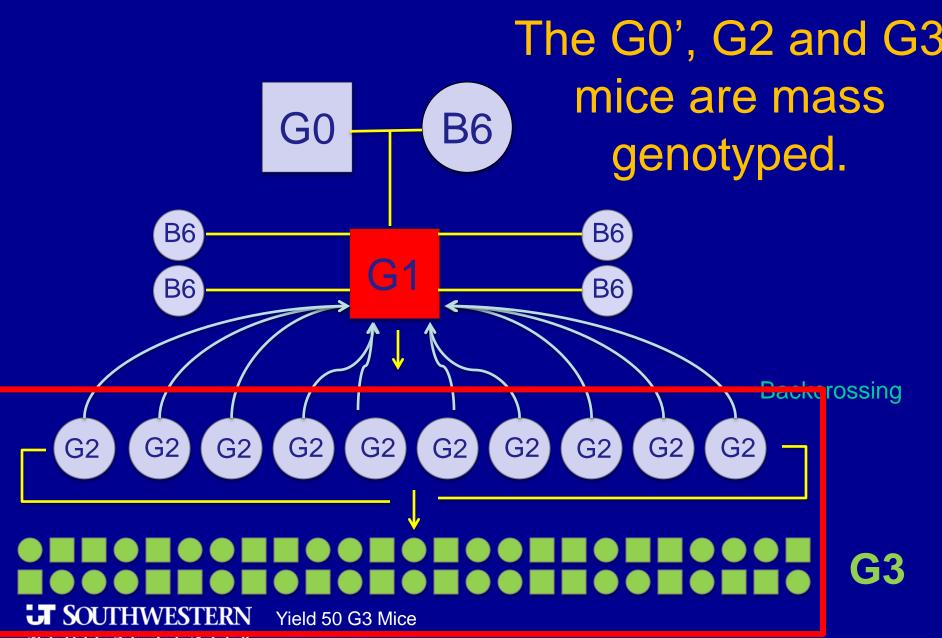


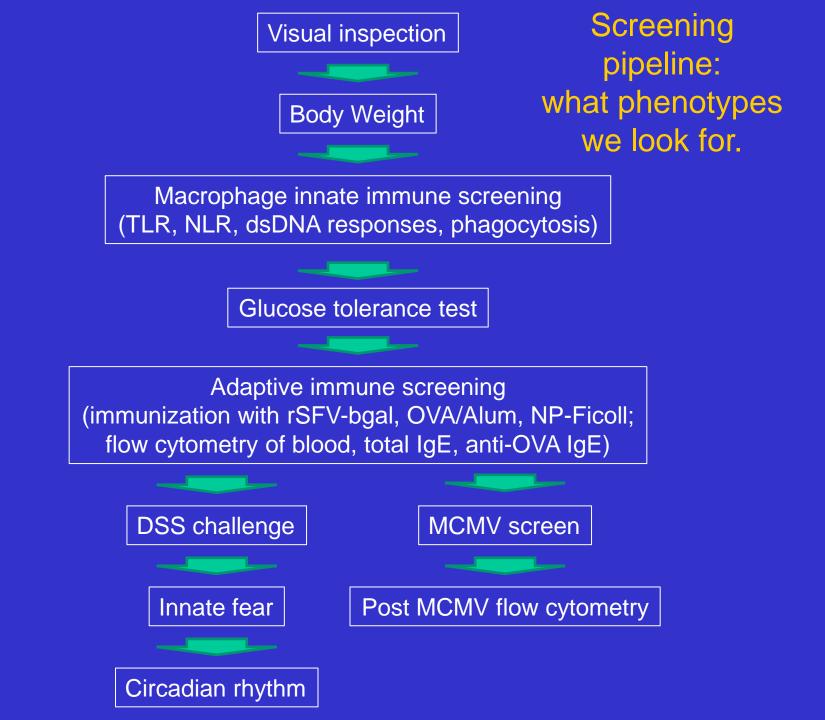
B6 x G0 mutations

Mutations per Black 6 x G0 Mating Total Exomes = 1197 Average Mutations = 63

JT SOUTHWESTERN MEDICAL CENTER




CENT


CAL

First we make the G1 mice...

Then we whole-exome sequence all G1 mice to find all mutations they might transmit to the G2 an G3 mice. If >30 mutations are present, we move forward to order an Ampliseq panel.

Summary statistics as of Nov. 9, 2015...

- 74,443 allelic variants of 17,913 genes have been tested in screening. Total gene number = 24,981 (72% affected)
- These mutations resided within a total of 34,229 G3 mice from 1,308 pedigrees.
- Approximately 19.7% of the genome has been mutated "to phenovariance" and tested in the homozygous state 3x or more in one or more screens.
- In adaptive immune screens alone, causative mutations in >70 genes known to be needed for immune development or function have been found, along with mutations in hundreds of genes that were previously unknown.
- A large fraction of our genome is needed for immune defense.

Linkage explorer: a program for the retrieval of relevant linkage data from large datasets

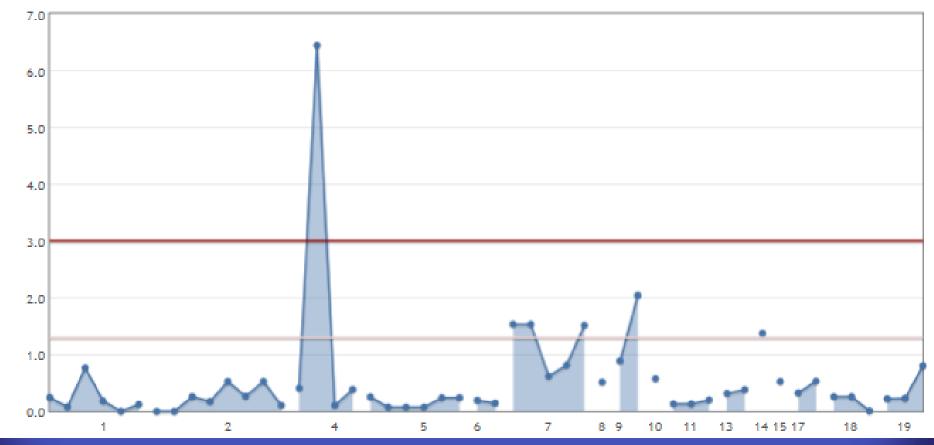
		Linkage	e Explorer						
List of candidate phenotypic muta	itions 🕐			Superpedigree Analysis (Position Based) Superpedigree Analysis (Gene Based)					
Analysis type: 🕜	Single linkage	Double linkage							
		wildcard search for genes or scre	ens	Calculate saturation statistics					
Select	gene(s)	in screen(s)	and for mice and for mice	and for phenotype(s)					
Filtered by	Allele type(s) OPredicted	d effect(s)							
	Nonsense Missense	Makesense Critical Splic	ing Noncritical Splicing						
	possible B6 mutations only								
	total mouse number	>= 10 and <=							
Variant alleles🕖	>= and <=	mutant alleles exist 🕜		View mutant allele statistics					
	HET VAR	mouse number >= 1	and REF mouse number >= 2						
Level of confidence()	p value cutoff 0.05	with Bonferroni correction							
Model	Only lethal model is considere	ed for selecting implicated genes							
Display results	☑ only for implicated genes		☑ allows loading r	result once					
	only for those mutations that	🗆 only for those mutations that score in both raw and norm assay 👔							
	showing higher than control or lower than control?								
	having 1 peak(s) above Bonferroni correction line of Manhattan plot in any v model, and a gap between top hit and the next one is >= 0 logs								
	Analyzed be	etween	and						
		Submit Refresh							
As of 2015-11-09 10:34 PM									
• 74,443 allelic variants of 17	,913 genes have been tested in screenir	ng.							
• This program reports scree	ning results encompassing a total of 34,2	29 mice from 1,308 pedigrees.		View histogram of pedigree sizes					

• 74,443 mutation sites have been tested a total of 5,902,083 times to detect phenotypic effects among the present collection of 34,229 G3 mice.

JT SOUTHWESTERN Medical center

Single linkage		Double linkage				
		wildcard search	for genes or screens			
gene(s)?	e.g. olfr[14]_[1-4] vmn%	in screen(s)?	%cd8%			
Allele type(s)	Predicted effect	(5)				
Nonsense	Missense	Makesense	Critical Splicing			
🗆 possible B6 mutat	tions only					
total mouse number		>= 20	and <=			
>= and <=		mutant alleles exist	?			
E HET	VAR	mouse number >=	3			
p value cutoff 0.0005	5	with Bonferroni correction				
🗆 Only lethal model	is considered for se	electing implicated genes				
only for implicate						
I only for those mu	both raw and norm	Ind norm assay 🕐				
showing higher th	an control or lower	than control 🕜				
✓ having 1 pea	ak(s) above Bonferro	roni correction line of Manhattan plot in any				
Analyzed	between					
		Submit	Refresh			
	<pre>gene(s)? Allele type(s) Nonsense possible B6 mutat total mouse number >= and <= HET p value cutoff 0.0005 Only lethal model Only lethal model only for implicate only for those mu having 1 pea</pre>	<pre>gene(s)? e.g. off[14]_[1-4] \vmn% Allele type(s) Predicted effect Nonsense Missense possible B6 mutations only total mouse number >= and <= HET VAR p value cutoff 0.0005 Only lethal model is considered for se Only lethal model is considered for se Only for implicated genes Only for those mutations that score in showing higher than control or lower having 1 peak(s) above Bonferror Analyzed between</pre>	<pre>wildcard search * gene(s)? e.g. off[14]_[1-4] vmn% in screen(s)? Allele type(s) Predicted effect(s) Nonsense Missense Makesense possible B6 mutations only total mouse number >= 20 >= and <= mutant alleles exist HET VAR mouse number >= p value cutoff 0.0005 with Bonferroni Only lethal model is considered for selecting implicated g only for implicated genes only for those mutations that score in both raw and norm showing higher than control or lower than control? having 1 peak(s) above Bonferroni correction line of Analyzed between</pre>			

The search returns a list of 104 variant alleles of 100 implicated genes, derived from 71 pedigrees.


31	Snrnp40 {4/20}	sp	4_130378043	splice acceptor site		probably null	R0443	FACS CD8+ T cells
32	Snrnp40 {4/20}	sp	4_130378043	splice acceptor site		probably null	R0443	FACS CD8+ T cells
33	Snrnp40 {4/20}	sp	4_130378043	splice acceptor site		probably null	R0443	FACS CD44+ CD8 MFI
34	Snrnp40 {4/20}	sp	4_130378043	splice acceptor site		probably null	R0443	FACS CD44+ CD8 MFI
35	Snrnp40 {4/20}	sp	4_130378043	splice acceptor site		probably null	R0443	FACS CD44+ CD8 MFI
36	Snrnp40 {4/20}	sp	4_130378043	splice acceptor site		probably null	R0443	FACS CD44+ CD8 MFI
37	Themis {6/6}	sp	10_28782011	missense	1.000	probably damaging	R0445	FACS CD4:CD8
38	Themis {6/6}	sp	10_28782011	missense	1.000	probably damaging	R0445	FACS CD4:CD8
39	Themis {6/6}	sp	10_28782011	missense	1.000	probably damaging	R0445	FACS CD4:CD8
40	Themis {6/6}	sp	10_28782011	missense	1.000	probably damaging	R0445	FACS CD8+ T cells in CD3+ T cells
41	Themis {6/6}	sp	10_28782011	missense	1.000	probably damaging	R0445	FACS CD8+ T cells in CD3+ T cells
42	Themis {6/6}	sp	10_28782011	missense	1.000	probably damaging	R0445	FACS CD8+ T cells in CD3+ T cells
43	Themis {6/6}	sp	10_28782011	missense	1.000	probably damaging	R0445	FACS CD8+ T cells in CD3+ T cells
44	Themis {6/6}	sp	10_28782011	missense	1.000	probably damaging	R0445	FACS CD8+ T cells in CD3+ T cells
45	Themis {6/6}	sp	10_28782011	missense	1.000	probably damaging	R0445	FACS CD8+ T cells in CD3+ T cells
46	Themis {6/6}	sp	10_28782011	missense	1.000	probably damaging	R0445	FACS CD8+ T cells in CD3+ T cells
47	Themis {6/6}	sp	10_28782011	missense	1.000	probably damaging	R0445	FACS CD8+ T cells in CD3+ T cells

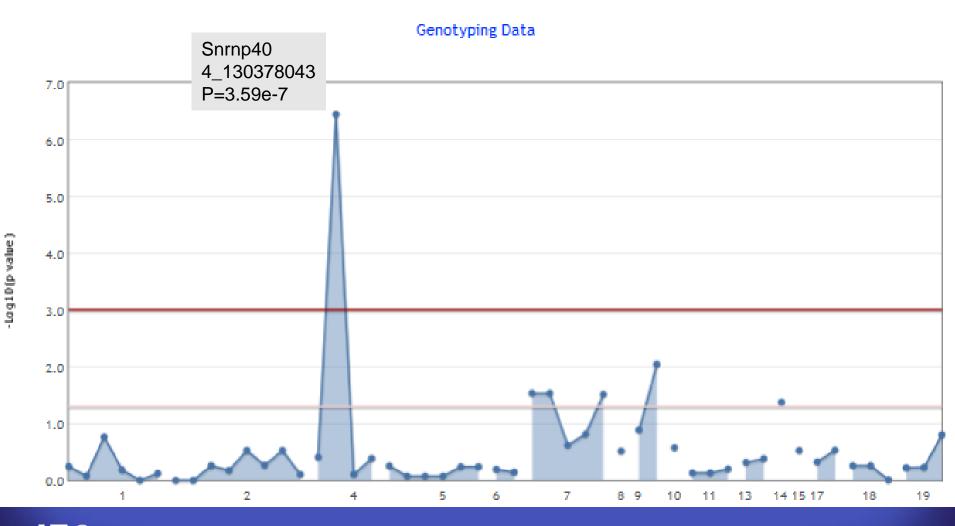
JE SOUTHWESTERN MEDICAL CENTER

Mht plot: recessive model (raw data wG2)

Single pedigree R0443 tested in FACS CD8+ T cells

Genotyping Data

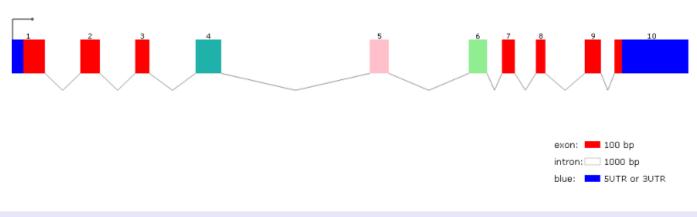
-lag10(p value)


JT

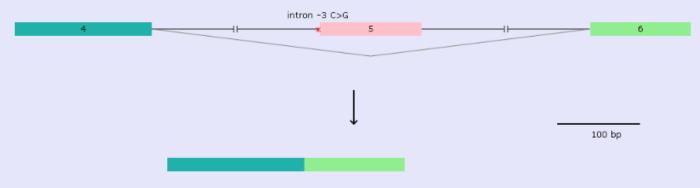
S

MEDICAL CENTER

Mht plot: recessive model (raw data wG2)


Single pedigree R0443 tested in FACS CD8+ T cells

JT SOUTHWESTERN MEDICAL CENTER


ID	39263								
Institutional Source	Beutler Lab								
Gene Symbol	Snrnp40								
Gene Name	small nuclear ribonucleop	40 (U5)							
Synonyms	Wdr57								
Accession Numbers									
Run Code	HSQ01007								
Stock #	R0443 (G1)								
Quality Score	225								
Status	Validated (trace)								
Chromosome	4								
Chromosomal Location	130360132-130390026 b	p(+) (GR	Cm38)						
Type of Mutation	splice acceptor site (3 b	p from e	exon)						
DNA Base Change (assembly)	C to G at 130378043 bp								
Zygosity	Heterozygous								
Amino Acid Change									
Ref Sequence	ENSEMBL: ENSMUSP00000	0101616	(fasta	0					
Gene Model	predicted sequence gen	e model							
SMART Domains							_		
(Ref Sequence)									
		100		150	200	250	300	350	
	0 50								
				E-Value					
				• E-Value		•			
	Domain 6	Start #	End	 E-Value N/. 	é Type	•			
	Domain • low complexity region	Start a	End 45	• E-Value N/. 1.64e-	• Type A INTRINSIC	•			
	Domain low complexity region WD40	Start # 24 56	End 45 95	E-Value N/. 1.64e- 1.83e-	• Type A INTRINSIC 9 SMART	2			
	Domain low complexity region WD40 WD40	Start = 24 56 99	End 45 95 138	 E-Value N/. 1.64e- 1.83e- 8.68e- 	• Type A INTRINSIC 9 SMART 7 SMART	•			
	Domain e low complexity region WD40 WD40 WD40	Start = 24 56 99 141	End 45 95 138 181	 E-Value N/. 1.64e- 1.83e- 8.68e- 3.81e- 	• Type A INTRINSIC 9 SMART 7 SMART 9 SMART	2			
	Domain low complexity region WD40 WD40 WD40 WD40	Start = 24 56 99 141 184	End 45 95 138 181 222	 E-Value N/. 1.64e- 1.83e- 8.68e- 3.81e- 3.24e- 	Type INTRINSIC SMART SMART SMART SMART SMART	•			
	Domain low complexity region WD40 WD40 WD40 WD40 WD40	Start = 24 56 99 141 184 225	End 45 95 138 181 222 264	 E-Value N/. 1.64e- 1.83e- 8.68e- 3.81e- 3.24e- 5.1e- 	• Type A INTRINSIC 9 SMART 7 SMART 9 SMART 5 SMART 8 SMART	•			
SMART Domains	Domain low complexity region WD40 WD40 WD40 WD40 WD40 WD40 WD40	Start = 24 56 99 141 184 225 271	End 45 95 138 181 222 264 314	 E-Value N/. 1.64e- 1.83e- 8.68e- 3.81e- 3.24e- 5.1e- 	 Type INTRINSIC SMART SMART SMART SMART SMART SMART SMART SMART SMART 	•			
SMART Domains (Predicted Sequence)	Domain low complexity region WD40 WD40 WD40 WD40 WD40 WD40 WD40	Start = 24 56 99 141 184 225 271	End 45 95 138 181 222 264 314	 E-Value N/. 1.64e- 1.83e- 8.68e- 3.81e- 3.24e- 5.1e- 	 Type INTRINSIC SMART SMART SMART SMART SMART SMART SMART SMART SMART 				
	Domain low complexity region WD40 WD40 WD40 WD40 WD40 WD40 WD40	Start = 24 56 99 141 184 225 271	End 45 95 138 181 222 264 314 356	 E-Value N/. 1.64e- 1.83e- 8.68e- 3.81e- 3.24e- 5.1e- 	 Type INTRINSIC SMART SMART SMART SMART SMART SMART SMART SMART SMART 	250	300	350	
	Domain low complexity region WD40 WD40 WD40 WD40 WD40 WD40 WD40 WD40	Start 24 56 99 141 184 225 271 317 100	End 45 95 138 181 222 264 314 356	 E-Value N/. 1.64e- 1.83e- 8.68e- 3.81e- 3.24e- 5.1e- 2.84e- 	Type A INTRINSIC SMART SMART SMART SMART SMART SMART SMART SMART				
	Domain Low complexity region WD40 WD40 WD40 WD40 WD40 WD40 WD40 WD40	Start = 24 56 99 141 184 225 271 317 100 Start	End 45 95 138 181 222 264 314 356	 E-Value N/. 1.64e- 1.83e- 8.68e- 3.81e- 3.24e- 5.1e- 2.84e- 	 Type A INTRINSIC 9 SMART 7 SMART 9 SMART 9 SMART 5 SMART 8 SMART 6 SMART 4 SMART 				
	Domain Image: state	Start • 24 56 99 141 184 225 271 317 100 Start 24	End 45 95 138 181 222 264 314 356 8 56 8 56 8 56 8 56 8 56 8 56 8 56	 E-Value N/. 1.64e- 1.83e- 8.68e- 3.81e- 3.24e- 5.1e- 2.84e- 	Type A INTRINSIC SMART SMART SMART SMART SMART SMART SMART SMART SMART Type INTRINSIC				
	Domain • low complexity region • WD40 • Domain • low complexity region • WD40 •	Start = 24 56 99 141 184 225 271 317 100 Start	End 45 95 138 181 222 264 314 356 8 56 8 56 8 5 95	 E-Value N/. 1.64e- 1.83e- 8.68e- 3.81e- 3.24e- 5.1e- 2.84e- 	Type A INTRINSIC SMART SMART SMART SMART SMART SMART SMART 200 Type INTRINSIC SMART				
	Domain Image: style	Start = 24 56 99 141 184 225 271 317 100 Start 24 56 99	End 45 95 138 181 222 264 314 356 8 56 8 56 8 5 138	 E-Value N/. 1.64e-3 1.83e-3 8.68e-3 3.81e-3 3.24e-3 5.1e-3 2.84e-3 150 E-Value N/A 9.2e-12 9.6e-10					
	Domain • low complexity region • WD40 • Domain • low complexity region • WD40 •	Start • 24 56 99 141 184 225 271 317 ••••• 100 ••••• 5tart 24 56	End 45 95 138 181 222 264 314 356 8 56 8 56 8 5 95	 E-Value N/. 1.64e-3 1.83e-3 8.68e-3 3.81e-3 3.24e-3 5.1e-3 2.84e-3 150 E-Value N/A 9.2e-12 9.6e-10					

Gene model

A. Gene View: Gene Symbol = Snrnp40; Transcript_ID = ENSMUST00000105994; Transcript_Name = Snrnp40-001

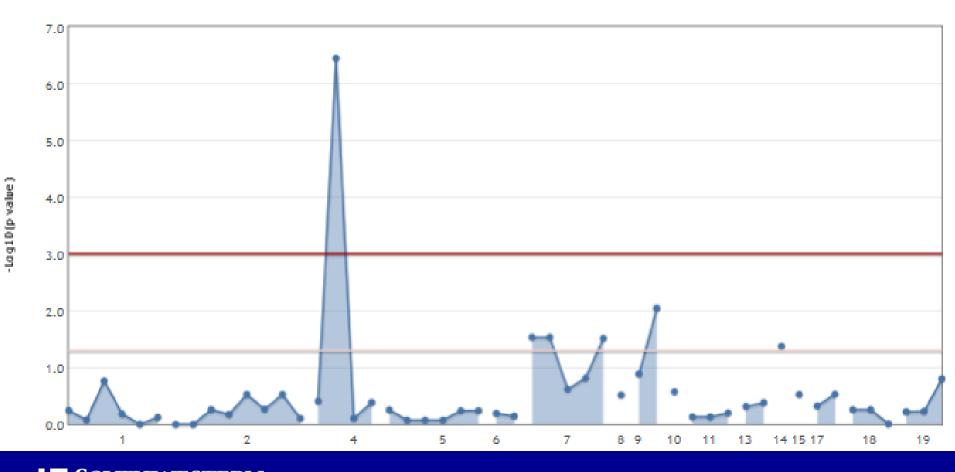
B. Mutation View: HSQ01007, R0443 at chr4_130378043 and Predicted Aberrant Splicing

· Exon5 skipping may occur

5)repeat steps(2-4) 29x

- Resulting transcript has 123 nt deletion of exon5
- This predicts the in-frame deletion of 41 amino acids beginning after amino acid 178 of the protein, which is normally 358 amino acids long
- Primer set for genotyping the mutation:

```
PCR-f: 5'-GCTGAACACACATGGTCCTCTTTCTTG-3'; PCR-r: 5'-GCATTAAGTGCCAACCTCCTGCAATC-3'
```

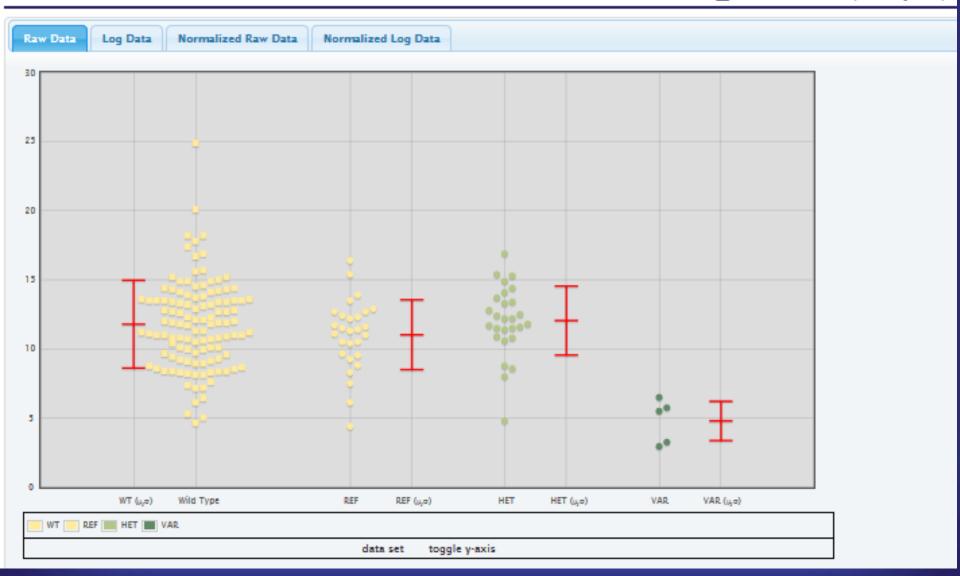

Seq-f: 5'-gaaaccagaagagggagtcag-3'; Seq-r: 5'-TCCTGCAATCTCAACATTTAAAAAAG-3' PCR condition: 1)95°C 2:00 2)95°C 0:30 3)56°C 0:30 4)72°C 1:00

```
6)72°C 7:00
7)4°C ∞
```

Mht plot: recessive model (raw data wG2)

Single pedigree R0443 tested in FACS CD8+ T cells

Genotyping Data



JT SOUTHWESTERN MEDICAL CENTER

FACS CD8+ T cells

Pedigree: R0443

Call: chr4_130378043 (Snrnp40)

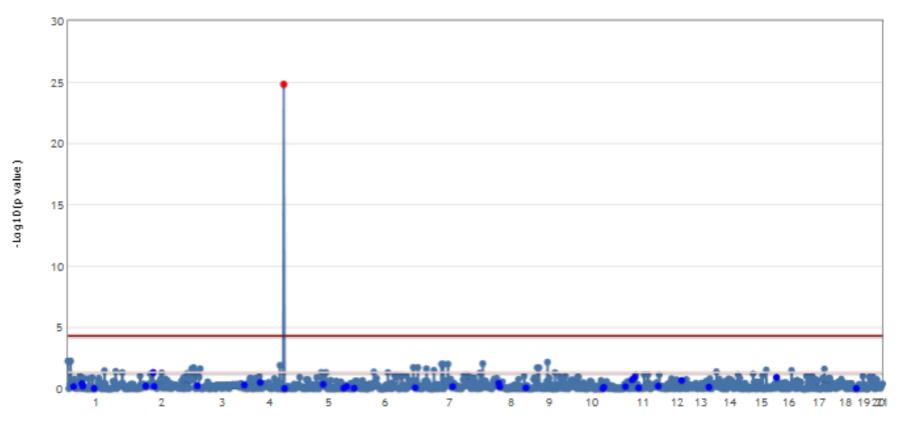
Gradually, much higher resolution is achieved as multiple pedigrees with identical or allelic mutations accumulate in the database

- The computer automatically generates "superpedigrees" when this occurs.
- Eventually, *all* mutations will be incorporated into superpedigrees. Presently 14,272 genes (57% of all genes) have superpedigrees.
- With multiple alleles, confidence in association between phenotype and genotype grows.

16 pedigrees have the same allele; three other "probably damaging" alleles also exist.

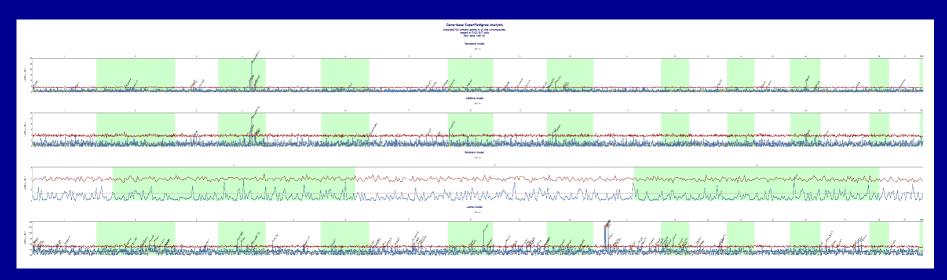
36	Snrnp40	4	1	16	Probably null		FACS CD44+ T MFI	142	
37	Snrnp40	4	4	19	Null + Missense	0.980	FACS CD44+ T MFI	171	
38	Snrnp40	4	4	19	Null + Missense	0.980	FACS CD8+ T cells	207	1
39	Snrnp40	4	4	19	Null + Missense	0.980	FACS CD8+ T cells	207	
40	Snrnp40	4	4	19	Null + Missense	0.980	FACS CD8+ T cells	207	
41	Snrnp40	4	1	16	Probably null		FACS CD8+ T cells	151	
42	Snrnp40	4	1	16	Probably null		FACS CD8+ T cells	151	
43	Snrnp40	4	1	16	Probably null		FACS CD8+ T cells	151	
44	Snrnp40	4	4	19	Null + Missense	0.980	FACS CD8+ T cells	207	
45	Snrnp40	4	4	19	Null + Missense	0.980	FACS CD8+ T cells	207	1
46	Snrnp40	4	4	19	Null + Missense	0.980	FACS CD8+ T cells	207	1
47	Snrnp40	4	1	16	Probably null		FACS CD8+ T cells	151	
48	Snrnp40	4	1	16	Probably null		FACS Macrophages	151	
49	Snrnp40	4	1	16	Probably null		FACS Macrophages	151	

MEDICAL CENTER

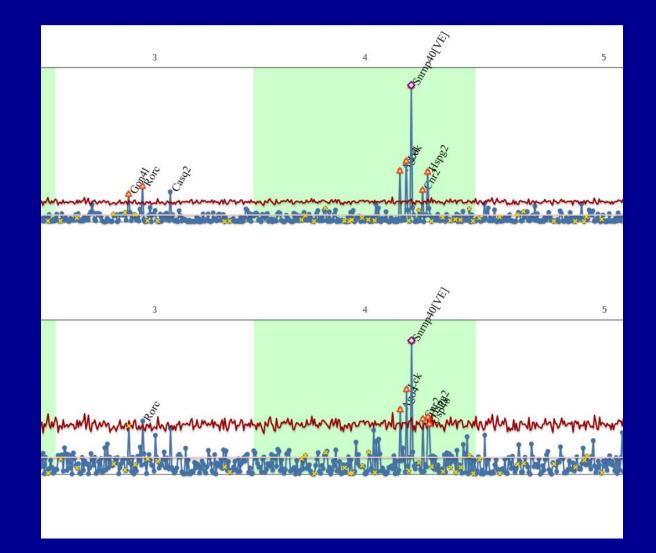

Mapping on 376 G3 mice from 16 pedigrees

Gene-based Superpedigree Analysis: recessive model (raw data wG2)

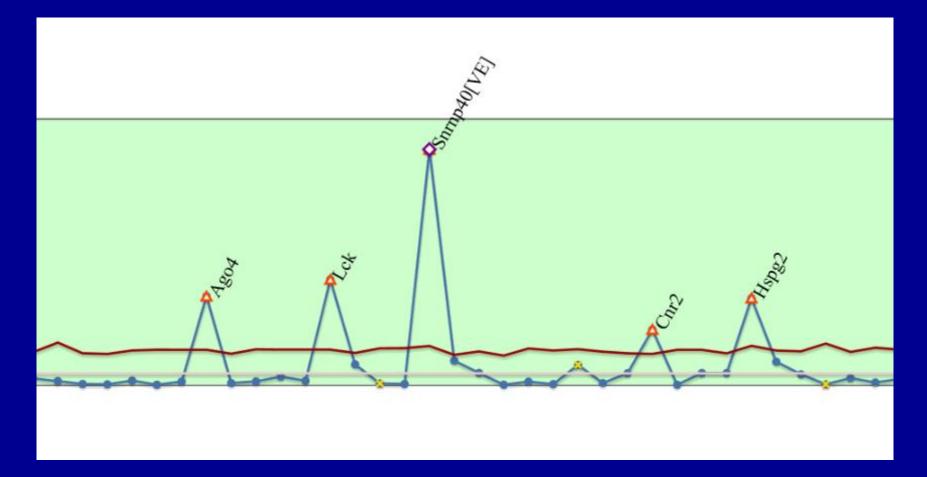
analyzed for Snrnp40


tested in FACS CD8+ T cells

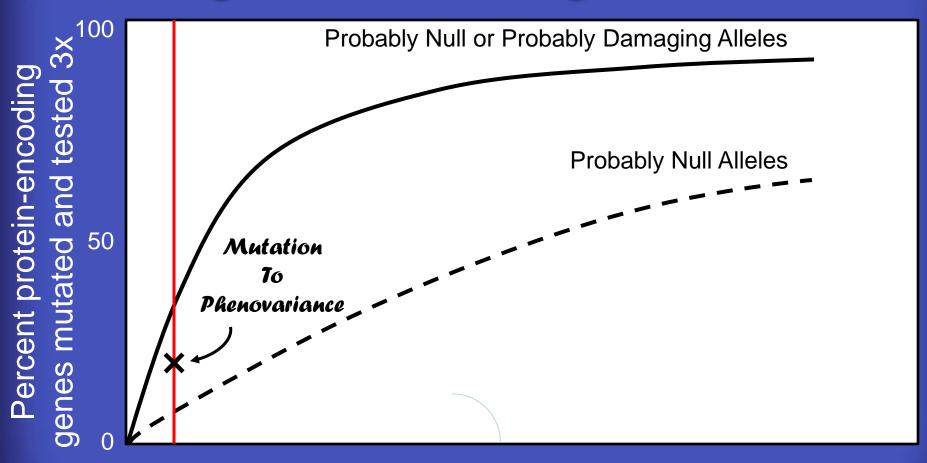
Mht plot for single pedigree: R0077 R0134 R0371 R0372 R0376 R0377 R0442 R0443 R0486 R0488 R0568 R0632 R0650 R0650 R0733 R1333 R1656


Superpedigrees that score in a single screen: whole genome view

B:T cell ratio in peripheral blood: superpedigrees showing inheritance by recessive, additive, and dominant models (top, middle, bottom)



The plot can be enlarged...



...and expanded horizontally for clarity. And as causation is confirmed by CRISPR analysis, individual mutations are marked with purple diamonds

Upper and lower estimates of gene damage will converge over time.

MEDICAL CENTER

Real-time identification of causative mutations

- Then: 5 years. Now: 1 hour.
- Then: one phenotype solved in 5 years. Now: 1-2 phenotypes solved per day (~3,000 times as fast as before).
- We are now limited only by the rate at which mutations can be produced and screened: about 600 G3 mice and 1,400 mutations can be analyzed per week, and many of them (0.5% to 1%) cause phenotype detected in our screens.

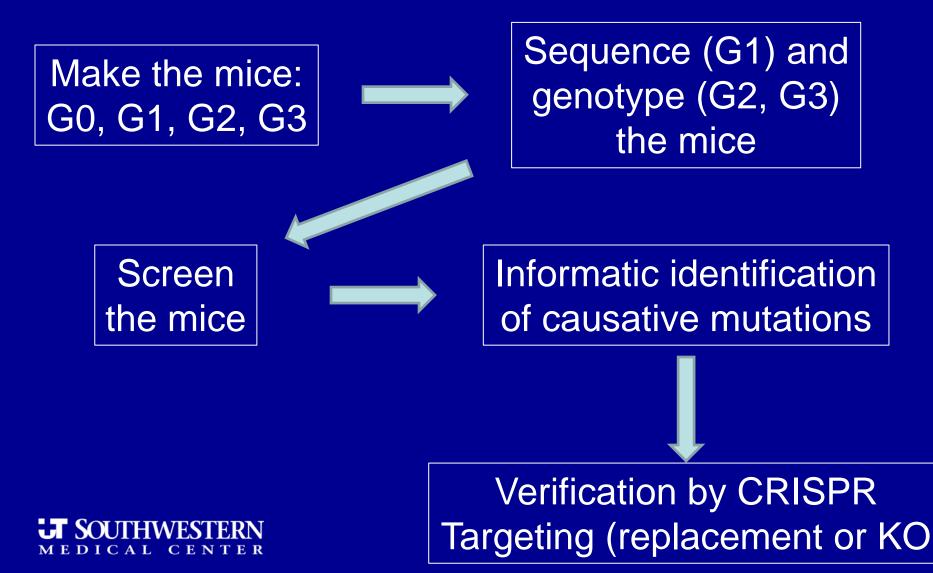
Real-time identification of causative mutations

- We project the destruction of the majority of genes and analysis of the phenotypic consequences within about three years.
- We will then know most of the genes required for immunity to operate as it does.
- But... establishing mechanism is the real bottleneck.
- Then again... this is an enviable position to occupy.

Betsy Layton

Christoph

Van Huffel



Alexander Poltorak

Irina Smirnova

JT SOUTHWES

Five essential processes are needed for high speed positional cloning

